Current Status of Veterinary Vaccines
The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases.
In its original concept, vaccination aims to mimic the development of naturally acquired immunity by inoculation of nonpathogenic but still immunogenic components of the pathogen in question, or closely related organisms. The term “vaccine” (from the Latin term “vacca,” meaning cow) was first coined by Edward Jenner to describe the inoculation of humans with the cowpox virus to confer protection against the related human smallpox virus and illustrates the close relationship between human and animal infectious disease sciences. The criteria for successful animal or veterinary vaccines can be very different from those for human vaccines depending on the animal groups under consideration. For example, criteria for companion animal vaccines are similar to those for human vaccines in that the health and welfare of the individual animal are primary concerns. The main objective of livestock vaccines, on the other hand, is to improve overall production for the primary producers, and the cost-benefit resulting from vaccination is the bottom line for this industry. Vaccination against zoonotic or food-borne infections is aimed at reducing or eliminating the risk for the consumer and in some cases to improve the productivity of the individual animal. Vaccination of wildlife is generally considered only with respect to infections that are transmittable to humans (zoonotic diseases), although welfare concerns are of increasing importance.
Conclusion
A standard editorial manager system is utilized for manuscript submission, review, editorial processing and tracking which can be securely accessed by the authors, reviewers and editors for monitoring and tracking the article processing.
Manuscripts can be forwarded to the Editorial Office at autoimmunedis@eclinicalsci.com
How we work:
- After submission, an acknowledgement with manuscript number is sent to the corresponding author within 7 working days.
- A 21 day window time frame is allotted for peer-review process wherein multiple experts are contacted.
- Author proof is generated within 7 working days after the acceptance decision.
Benefits on Publication:
Open Access: Permanent free access to your article upon publication ensures extensive global reach and readership.
Easy Article Sharing: Our open access enables you to share your article directly with colleagues through email and on social media via a single link, permitting third party reuse with appropriate citation in addition to the retention of content copyright by the author.
Global Marketing: Through promotion in a targeted global email announcement or press release, your article will be seen by thousands of the top-most thought-leaders in your field.
Color Art: In a world of black & white journal articles, high-quality full-color images make your article stand out from the crowd and tell a complete story, increasing readers and citations.
Social Media Exposure: Extended reach for your article through links on Twitter accounts provides maximum visibility worldwide.
Reprints: Distribute your work to colleagues and at conferences as we provide hard copy color reprints of your article on order.
Media Contact:
John Kimberly
Editorial Manager
Journal of Vaccines & Vaccination
Email: jvv@scholarlypub.com