A detail note on Diagnostic Microbiology

A detail note on Diagnostic Microbiology
Applied Microbiology is a peer-reviewed Open Access Journal, encourages on-going international research and articles related to but not limited to Medical microbiology, pathogenic microbes, Pharmaceutical microbiology (antibiotics, enzymes, vitamins, vaccines) Industrial microbiology, Microbial biotechnology, Plant pathology, Veterinary, Food, Agricultural, Soil, Environmental Microbiology, etc.
It’s our privilege to recite you as a foremost strategist in the realm of research and invite to endowment your research penmanship to write (volume 7 issue 2) Short Communication or mini review on above topic to be published in our journal.
Diagnostic microbiology is the study of microbial identification. Since the discovery of the germ theory of disease, scientists have been finding ways to harvest specific organisms. Using methods such as differential media or genome sequencing, physicians and scientists can observe novel functions in organisms for more effective and accurate diagnosis of organisms. Methods used in diagnostic microbiology are often used to take advantage of a particular difference in organisms and attain information about what species it can be identified as, which is often through a reference of previous studies. New studies provide information that others can reference so that scientists can attain a basic understanding of the organism they are examining.
Anaerobic organisms require an oxygen-free environment. When culturing anaerobic microbes, broths are often flushed with nitrogen gas to extinguish oxygen present, and growth can also occur on media in a chamber without oxygen present. Sodium resazurin can be added to indicate redox potential. Cultures are to be incubated in an oxygen-free environment for 48 hours at 35 °C before growth is examined.
Anaerobic bacteria collection can come from a variety of sources in patient samples, including blood, bile, bone marrow, cerebrospinal fluid, direct lung aspirate, tissue biopsies from a normally sterile site, fluid from a normally sterile site (like a joint), dental, abscess, abdominal or pelvic abscess, knife, gunshot, or surgical wound, or severe burn.
Antibody detection
A benefit of antibody detection (ELISA) is that protein identification on a microorganism becomes faster than a western blot. Antibody detection works by attaching an indicator to an antibody with a known specificity and observing whether the antibody attaches. ELISA can also indicate viral presence and is highly specific, having a detection specificity of 10−9-10−12 moles per litre detection. By knowing the epitope sequence of the antibody, ELISA can also be used for antigen detection in a sample.
Applied Microbiology: Open Access follows Editorial Tracking System for quality in peer review process. Editorial Tracking is an online manuscript submission, review and tracking systems used by most of the best open access journals.
Submit manuscripts at https://www.longdom.org/editorial-tracking/index.php
or send as an e-mail attachment to the Editorial Office at microbiology@journalsci.org
Manuscripts accepted for publication will be published both in English and other languages as recommended by the author.
Best Regards,
Jessica
Journal Manager
Applied Microbiology: Open Access
Whatsup no: +442036958168
Email: appliedmicrobio@medicalsci.org